Università della Svizzera italiana	Faculty of Informatics	

Transfinite Barycentric Coordinates for Arbitrary Planar Domains

Qingjun Chang, Kai Hormann

Faculty of Informatics, Università della Svizzera italiana, Switzerland

May 29, 2025 in St. Louis, USA

Generalized barycentric coordinates

Given a polygon Ω with n vertices p_1, p_2, \ldots, p_n , and any $x \in \Omega$, find coordinates $\lambda(x) = [\lambda_1, \lambda_2, \ldots, \lambda_n]$ such that

$$x = \sum_{i=1}^{n} \lambda_i(x) p_i, \quad \sum_{i=1}^{n} \lambda_i(x) = 1, \quad \lambda_i(v_j) = \delta_{i,j} = \begin{cases} 1, \ i=j\\ 0, \ i\neq j \end{cases}$$

* λ are generalized barycentric coordinates of x w.r.t. Ω .

Generalized barycentric coordinates

Given a polygon Ω with n vertices p_1, p_2, \ldots, p_n , and any $x \in \Omega$, find coordinates $\lambda(x) = [\lambda_1, \lambda_2, \ldots, \lambda_n]$ such that

$$x = \sum_{i=1}^{n} \lambda_i(x) p_i, \quad \sum_{i=1}^{n} \lambda_i(x) = 1, \quad \lambda_i(v_j) = \delta_{i,j} = \begin{cases} 1, \ i=j \\ 0, \ i \neq j \end{cases}$$

* λ are generalized barycentric coordinates of x w.r.t. Ω .

Considering data f_1, f_2, \ldots, f_n corresponding to the vertices, we can interpolate the data at any point $x \in \Omega$ by

$$g(x) = \sum_{i=1}^{n} \lambda_i(x) f_i, \quad \sum_{i=1}^{n} \lambda_i(x) = 1$$

(Generalized barycentric interpolation)

Generalized barycentric coordinates

Given a polygon Ω with n vertices p_1, p_2, \ldots, p_n , and any $x \in \Omega$, find coordinates $\lambda(x) = [\lambda_1, \lambda_2, \ldots, \lambda_n]$ such that

$$x = \sum_{i=1}^{n} \lambda_i(x) p_i, \quad \sum_{i=1}^{n} \lambda_i(x) = 1, \quad \lambda_i(v_j) = \delta_{i,j} = \begin{cases} 1, \ i=j \\ 0, \ i \neq j \end{cases}$$

* λ are generalized barycentric coordinates of x w.r.t. Ω .

Considering data f_1, f_2, \ldots, f_n corresponding to the vertices, we can interpolate the data at any point $x \in \Omega$ by

$$g(x) = \sum_{i=1}^{n} \lambda_i(x) f_i, \quad \sum_{i=1}^{n} \lambda_i(x) = 1$$

(Generalized barycentric interpolation)

- When n > 3, such λ are usually not unique.
- Looking forward to finding λ that satisfy some properties.

Transfinite Barycentric Coordinates

Università della Svizzera italiana

Transfinite barycentric coordinates

Polygon: $\{p_i : i = 1, ..., n\}$

generalized barycentric coordinates $\lambda_i(x)$

$$\begin{split} \sum_{i=1}^n \lambda_i(x) p_i &= x & \text{linear reproduction} & \int_{x_i=1}^n \lambda_i(x) &= 1 & \text{partition of unity} \\ \lambda_i(p_j) &= \delta_{i,j} & \text{Lagrange property} & J \end{split}$$

Curve: $\{p(t) \colon t \in [a, b]\}, \ p(a) = p(b)$

transfinite barycentric kernel $\lambda(\boldsymbol{x},t)$

$$\int_{a}^{b} \lambda(x,t) p(t) \, \mathrm{d}t = x$$

$$\int_a^b \lambda(x,t) \, \mathrm{d}t = 1$$

$$\lambda(p(s),t) = \delta(s-t)$$

Transfinite barycentric coordinates

Polygon: $\{p_i : i = 1, ..., n\}$

generalized barycentric coordinates $\lambda_i(x)$

$$\sum_{i=1}^{n} \mu_i(x)(p_i - x) = 0$$
$$\lambda_i(x) = \mu_i(x) / \sum_{j=1}^{n} \mu_j(x)$$

Curve: $\{p(t) \colon t \in [a, b]\}, \ p(a) = p(b)$

transfinite barycentric kernel $\lambda(x, t)$

$$\int_{a}^{b} \mu(x,t)(p(t)-x) dt = 0$$
$$\lambda(x,t) = \mu(x,t) / \int_{a}^{b} \mu(x,s) ds$$

Discretize the continuous boundary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Discretize the continuous boundary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

Related work

✤ Wachspress kernel [Warren et al., 2007]

$$\mu(x,t) = \frac{p'(t) \times p''(t)}{\left((p(t) - x) \times p'(t)\right)^2}$$

Mean value kernel [Dyken and Floater, 2009]

$$\mu(x,t) = \frac{(p(t) - x) \times p'(t)}{\|p(t) - x\|^3}$$

Laplace kernel [Kosinka and Bartoň, 2016]

$$\mu(x,t) = \frac{2\|p'(t)\|^2(p(t)-x) \times p'(t) - \|p(t)-x\|^2 p'(t) \times p''(t)}{\left((p(t)-x) \times p'(t)\right)^2}$$

12 1 2

Related work

✤ Wachspress kernel [Warren et al., 2007] only for convex domains

$$\mu(x,t) = \frac{p'(t) \times p''(t)}{\left((p(t) - x) \times p'(t)\right)^2}$$

Mean value kernel [Dyken and Floater, 2009] can be negative

$$\mu(x,t) = \frac{(p(t) - x) \times p'(t)}{\|p(t) - x\|^3}$$

Laplace kernel [Kosinka and Bartoň, 2016] only for convex domains

$$\mu(x,t) = \frac{2\|p'(t)\|^2(p(t)-x) \times p'(t) - \|p(t)-x\|^2 p'(t) \times p''(t)}{\left((p(t)-x) \times p'(t)\right)^2}$$

Related work

Gordon–Wixom interpolation [Gordon and Wixom, 1974]

$$g_{1,-1}(x,\theta) = \left(\frac{f(y_1)}{d_1} + \frac{f(y_{-1})}{d_{-1}}\right) \middle/ \left(\frac{1}{d_1} + \frac{1}{d_{-1}}\right), \quad g(x) = \frac{1}{2\pi} \int_0^{2\pi} g_{1,-1}(x,\theta) \,\mathrm{d}\theta$$

Weighted Gordon–Wixom interpolation [Belyaev, 2006]

$$g(x) = \int_0^{2\pi} g_{1,-1}(x,\theta)\omega(x,\theta) \,\mathrm{d}\theta \Big/ \int_0^{2\pi} \omega(x,\theta) \,\mathrm{d}\theta$$

Positive Gordon–Wixom kernel [Manson et al., 2011]

$$g_{i,j}(x,\theta) = \left(\frac{f(y_i)}{d_i} + \frac{f(y_{-j})}{d_{-j}}\right) / \left(\frac{1}{d_i} + \frac{1}{d_{-j}}\right)$$

$$g(x) = \int_0^{2\pi} \sum_{i=1}^m \sum_{j=-n}^{-1} g_{i,j}(x,\theta) \omega_{i,j}(x,\theta) \,\mathrm{d}\theta / \int_0^{2\pi} \sum_{i=1}^m \sum_{j=-n}^{-1} \omega_{i,j}(x,\theta) \,\mathrm{d}\theta$$

[Chang et al., 2023]

[Chang et al., 2023]

[Chang et al., 2023]

[Chang et al., 2023]

Discrete maximum likelihood interpolation

Transfinite Barycentric Coordinates

Extension to continuous boundaries

 $\boldsymbol{\diamond}$ Translate and project the boundary onto the unit circle oriented at $\boldsymbol{0}$

$$\hat{p}(t) = \frac{p(t) - x}{r(x, t)}, \qquad r(x, t) = \|p(t) - x\|$$

- Smooth the adjacent points (not needed)
- \clubsuit Compute $\hat{\lambda}(t)$ by maximizing the likelihood function

$$\ell[\hat{\lambda}] = \int_a^b \log \hat{\lambda}(t) \, \mathrm{d}t \qquad \qquad \mathsf{s.t.} \quad \int_a^b \hat{\lambda}(t) \hat{p}(t) \, \mathrm{d}t = \mathbf{0}, \qquad \qquad \int_a^b \hat{\lambda}(t) \, \mathrm{d}t = 1$$

 \clubsuit Compute the barycentric kernel $\lambda(x,t)$ over the original boundary

$$\lambda(x,t) = \frac{\hat{\lambda}(t)}{r(x,t)} \bigg/ \int_{a}^{b} \frac{\hat{\lambda}(s)}{r(x,s)} \, \mathrm{d}s$$

Extension to continuous boundaries

 \bullet Translate and project the boundary onto the unit circle oriented at 0

$$\hat{p}(t) = \frac{p(t) - x}{r(x, t)}, \qquad r(x, t) = \|p(t) - x\|$$

bints (not needed)
nizing the likelihood function **Positive weight function**

Smooth the adjacent points (not needed)

• Compute $\hat{\lambda}(t)$ by maximizing the likelihood function

$$\ell[\hat{\lambda}] = \int_a^b \log \hat{\lambda}(t) \boldsymbol{w}(t) \, \mathrm{d}t \qquad \text{s.t.} \quad \int_a^b \hat{\lambda}(t) \hat{p}(t) \boldsymbol{w}(t) \, \mathrm{d}t = \mathbf{0}, \quad \int_a^b \hat{\lambda}(t) \boldsymbol{w}(t) \, \mathrm{d}t = 1$$

\diamond Compute the barycentric kernel $\lambda(x, t)$ over the original boundary

$$\lambda(x,t) = \frac{\hat{\lambda}(t)\boldsymbol{w}(t)}{r(x,t)} \bigg/ \int_{a}^{b} \frac{\hat{\lambda}(s)\boldsymbol{w}(s)}{r(x,s)} \,\mathrm{d}s$$

ł

Extension to continuous boundaries

☞ Problem.1: How to solve the optimization problem?

IN Problem.2: How to choose the weight function?

\bigstar Compute $\hat{\lambda}(t)$ by maximizing the likelihood function

$$\ell[\hat{\lambda}] = \int_a^b \log \hat{\lambda}(t) \boldsymbol{w}(t) \, \mathrm{d}t \qquad \text{s.t.} \quad \int_a^b \hat{\lambda}(t) \hat{p}(t) \boldsymbol{w}(t) \, \mathrm{d}t = \mathbf{0}, \quad \int_a^b \hat{\lambda}(t) \boldsymbol{w}(t) \, \mathrm{d}t = 1$$

 \clubsuit Compute the barycentric kernel $\lambda(x,t)$ over the original boundary

$$\lambda(x,t) = \frac{\hat{\lambda}(t)\boldsymbol{w}(t)}{r(x,t)} \bigg/ \int_{a}^{b} \frac{\hat{\lambda}(s)\boldsymbol{w}(s)}{r(x,s)} \,\mathrm{d}s$$

With the Lagrange multipliers method and the Euler-Lagrange equation

$$\hat{\lambda}(t) = \frac{1}{\phi_0 + \phi^{\mathsf{T}} \hat{p}(t)}, \quad \phi_0 = \int_a^b w(t) \, \mathrm{d}t$$

With the Lagrange multipliers method and the Euler-Lagrange equation

$$\hat{\lambda}(t) = \frac{1}{\phi_0 + \phi^{\mathsf{T}} \hat{p}(t)}, \quad \phi_0 = \int_a^b w(t) \,\mathrm{d}t$$

The ϕ can be computed by minimizing the function

$$\phi = \arg\min_{\phi \in \Phi} F(\phi), \quad F(\phi) = -\int_a^b \log(\phi_0 + \phi^{\mathsf{T}} \hat{p}(t)) w(t) \, \mathrm{d}t$$

With the Lagrange multipliers method and the Euler-Lagrange equation

$$\hat{\lambda}(t) = \frac{1}{\phi_0 + \phi^{\mathsf{T}} \hat{p}(t)}, \quad \phi_0 = \int_a^b w(t) \,\mathrm{d}t$$

The ϕ can be computed by minimizing the function

$$\phi = \arg\min_{\phi \in \Phi} F(\phi), \quad F(\phi) = -\int_a^b \log(\phi_0 + \phi^{\mathsf{T}} \hat{p}(t)) w(t) \, \mathrm{d}t$$

The domain of F is a circle with radius ϕ_0 centered at the origin

$$\Phi = \{\phi \in \mathbb{R}^2 \mid \|\phi\| \le \phi_0\}$$

With the Lagrange multipliers method and the Euler-Lagrange equation

$$\hat{\lambda}(t) = \frac{1}{\phi_0 + \phi^{\mathsf{T}} \hat{p}(t)}, \quad \phi_0 = \int_a^b w(t) \,\mathrm{d}t$$

The ϕ can be computed by minimizing the function

$$\phi = \arg\min_{\phi \in \Phi} F(\phi), \quad F(\phi) = -\int_a^b \log(\phi_0 + \phi^{\mathsf{T}} \hat{p}(t)) w(t) \, \mathrm{d}t$$

The domain of F is a circle with radius ϕ_0 centered at the origin

$$\Phi = \{\phi \in \mathbb{R}^2 \mid \|\phi\| \le \phi_0\}$$

 $F(\phi)$: strictly convex function Newton method

Constant weight function

 $w_x(t) = 1$

 $\lambda(x,t)$ converges slowly to δ function

g(x) converges slowly to g(s)

▲ロト ▲母ト ▲ヨト ▲ヨト 三日 のへで

✤ Inverse distance weight function

 $\lambda(x,t)$ converges quickly to δ function

g(x) converges quickly to g(s)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

✤ Inverse distance weight function

 $\lambda(x,t)$ converges quickly to δ function

g(x) converges quickly to g(s)

 $\lambda(x,t)$ is a pseudo-harmonic kernel

▲母▶▲目▶▲目▶ ▲目■ のQ@

♦ Inverse distance weight function

Qingjun Chang, Kai Hormann (USI-INF)

12/18

▲ 문 ▶ ▲ 문 ▶ ▲ 문 ■ ● ○ ○ ○

***** *k*-th power of inverse distance weight function

$$w_x(t) = \frac{1}{r(x,t)^k}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Qingjun Chang, Kai Hormann (USI-INF)

***** *k*-th power of inverse distance weight function

$$w_x(t) = \frac{1}{r(x,t)^k}$$

Qingjun Chang, Kai Hormann (USI-INF)

13/18

Transfinite Barycentric Coordinates

Transfinite Barycentric Coordinates

Reason for improving stability

$$w_{x}(t) = \frac{1}{r(x,t)^{4}} \qquad \qquad w_{x}(t) = \frac{1}{r(x,t)^{4}} + \int_{a}^{b} \frac{1}{r(x,s)^{4}} \, \mathrm{d}s$$

$$F(\phi) = -\int_a^b \log(\phi_0 + \phi^\mathsf{T} \hat{p}_x(t)) w_x(t) \,\mathrm{d}t$$

Experiments - Comparison of interpolation

Experiments - Interpolating polygonal boundary domain

generalized barycentric coordinates

Experiments - Comparison of image deformation

source

mean value kernel

positive Gordon–Wixom

Poisson kernel

 $w_x(t) = \frac{1}{r^4} + \int_a^b \frac{1}{r^4} \,\mathrm{d}s$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion

- Extend maximum likelihood coordinates to arbitrary closed domains ٠
 - ♦ Variational problem (Lagrange multipliers method: Euler-Lagrange equation)
- By introducing a weight function, we get different results *
 - Constant weight function (equivalent to the discrete maximum likelihood coordinates) (convergence slowly to the δ function at the boundary.) Positive & Smooth
 - Inverse distance weight (*pseudo-harmonic kernel*)
 - k-th power of inverse distance weight (unstable optimization)
 - Modified k-th power of inverse distance weight (stable optimization)

Parameterization-dependent *

- The natural parameterization is good enough for most cases
- More freedom for the users

Thank you!

◆□▼ ▲□▼ ▲目▼ ▲□▼ ▲□▼

Running time

Figure 7: Running time in seconds for evaluating our interpolants and the PGW interpolant based on $N = 2^{K}12$ boundary samples at 26000 domain points (left) and for computing the piecewise linear approximation of our interpolants and the harmonic interpolant over a domain triangulation with M vertices (right).

Solo 単純 スポット (ポット) (日本)

Experiments - Construct boundary and boundary data

Using quadratic B-splines for describing both the boundary and the boundary data

Construct boundary

 $p(t) = \sum_{i=0}^{n+1} p_i B_i(t)$

$$(p_0 := p_n, p_{n+1} := p_1)$$

Specific boundary data

$$f(t) = \sum_{i=0}^{n+1} f_i B_i(t)$$

$$(f_0 := f_n, \ f_{n+1} := f_1)$$

* Arc length differential weight function

 $w_{r}(t) = \|\hat{p}_{r}'(t)\|$ I'ut (r) dr $\arg\max\ell[b_x] = \oint_{\hat{p}_-} \log k_x \, \mathrm{d}\sigma$ s.t. $\oint_{\hat{p}_x} k_x \, \mathrm{d}\sigma = 1,$ $\oint_{\hat{p}_x} k_x \cdot \sigma \, \mathrm{d}\sigma = \mathbf{0}.$ p(t) $\hat{p}_x(t)$ C^0 continuity $w_x(t) = \frac{|(p(t) - x) \times p'(t)|}{r(x, t)^2} = |\mu(x, t)|r(x, t)|$ $\mu(x,t)$ is mean value kernel

シック・目前・4回を4回を4回を4回を

Arc length differential weight function

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

How different parameterizations affect the results

Figure 12: Transfinite basis function for our kernel with ω_x in (20) using the natural (red) parameterization of the boundary spline curve (a), after applying a monotonic (green) reparameterization (b), which creates a significant local maximum in the bottom right part of the domain, and after applying the arc-length (blue) reparameterization (c), which has little effect on the result in this example.

Belyaev, A. (2006).

On transfinite barycentric coordinates.

In *Proceedings of the Fourth Symposium on Geometry Processing*, SGP '06, pages 89–99, Aire-la-Ville. Eurographics Association.

Chang, Q., Deng, C., and Hormann, K. (2023).
 Maximum likelihood coordinates.
 Computer Graphics Forum, 42(5):Article e14908, 13 pages.

Dyken, C. and Floater, M. S. (2009).
 Transfinite mean value interpolation.
 Computer Aided Geometric Design, 26(1):117–134.

Gordon, W. J. and Wixom, J. A. (1974). Pseudo-harmonic interpolation on convex domains. *SIAM Journal on Numerical Analysis*, 11(5):909–933.

Kosinka, J. and Bartoň, M. (2016).

Convergence of barycentric coordinates to barycentric kernels. *Computer Aided Geometric Design*, 43:200–210. Manson, J., Li, K., and Schaefer, S. (2011).
 Positive Gordon-Wixom coordinates.
 Computer-Aided Design, 43(11):1422-1426.
 The PGW source code is available at http://josiahmanson.com/research/gordon_wixom_coords/.

Warren, J., Schaefer, S., Hirani, A. N., and Desbrun, M. (2007).
 Barycentric coordinates for convex sets.
 Advances in Computational Mathematics, 27(3):319–338.

◇>◇ 単則 → 出 → → 用 → → 目 →