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Abstract

Barycentric coordinates provide a simple way of expressing the linear interpolant to data
given at the vertices of a triangle and have numerous applications in computer graphics
and other fields. The generalization of barycentric coordinates to polygons with more
than three vertices is not unique and many constructions have been proposed. Among
them, mean value coordinates stand out by having a simple closed form and being well-
defined for arbitrary polygons, but they may take on large negative values in the case
of concave polygons, leading to artefacts in applications like shape deformation. We
present a modification of mean value coordinates that is based on the observation that the
mean value coordinates of some point v inside a polygon can be negative if the central
projection of the polygon onto the unit circle around v folds over. By iteratively smoothing
the projected polygon and carrying over this smoothing procedure to the barycentric
coordinates of v , these fold-overs as well as the negative coordinate values and shape
deformation artefacts gradually disappear, and they are guaranteed to completely vanish
after a finite number of iterations.
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1 Introduction

Möbius [24] observed that any point v in the plane can be written as a unique affine combination of the
vertices of a triangle T , and he called the weights of this affine combination the barycentric coordinates
of v with respect to T . Barycentric coordinates are widely used in computer graphics for interpolating
vertex attributes such as colours, normals, or texture coordinates over the triangles of a triangle mesh, and
they also play a key role in other disciplines. Over the last two decades, barycentric coordinates have been
generalized to arbitrary polygons and polytopes, which has led to novel solutions in applications like mesh
parameterization [7], image warping [28], shape deformation [16], generalized Bézier surfaces [20], finite
element methods [10], and many more [14].

All these applications have in common that they require to interpolate data f1, . . . , fn ∈Rm given at the
vertices v1, . . . , vn of a polytope Ω⊂Rd with n ≥ d +1, and they benefit from the barycentric interpolant

f : Ω→Rm , f (v ) =
n
∑

i=1

λi (v ) fi , (1)

where the functions λi : Ω→R, i = 1, . . . , n are generalized barycentric coordinates with most or even all of
the following properties:

• Partition of unity:
∑n

i=1λi (v ) = 1 for v ∈Ω;

• Linear reproduction:
∑n

i=1λi (v )vi = v for v ∈Ω;

• Lagrange property: λi (v j ) =δi , j for i , j = 1, . . . , n ;

• Non-negativity: λi (v )≥ 0 for v ∈Ω and i = 1, . . . , n ;

• Smoothness: λ1(v ), . . . ,λn (v ) vary smoothly with v ∈Ω;

• Linearity on the edges: λi is linear on the edges of Ω.

The Lagrange property ensures that f in (1) is indeed an interpolant of the given data, and the linear
reproduction property guarantees that linear functions, including the identity, are reproduced, which is
crucial for shape deformation. Non-negativity and partition of unity imply that the interpolated values f (v )
are inside the convex hull of the data, and smoothness usually refers to C 1 or C 2 continuity, which is
important if derivatives of f are needed. Linearity on the edges is not a strict requirement, but, like the
Lagrange property, a consequence of the other properties in the case of convex polytopes [9, 3].
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source k = 0 k = 1 k = 2 k = 3 k = 4

Figure 1: Deformation of a source image (left), obtained by moving six vertices (blue) of the control polygon. The
deformation based on mean value coordinates (k = 0) exhibits severe artefacts, caused by negative coordinate values.
Using iterative coordinates, these deformation artefacts gradually disappear as the number of iterations increases
(k = 1, 2, 3, 4).

1.1 Related work

While barycentric coordinates are unique for simplices, several constructions have been proposed for
arbitrary polygons and polytopes. Kalman [17]was probably the first to generalize barycentric coordinates to
convex polyhedra, but his coordinates are only C 0. Using projective geometry, Wachspress [26] later derived
smooth and rational coordinates for convex polygons, which have a simple closed form [23] and can be
extended to higher dimensions [27]. However, these Wachspress coordinates, as well as discrete harmonic
coordinates [5], are not well-defined for concave polygons.

Floater [8]was the first to discover a simple closed-form construction of smooth coordinates that are well-
defined for arbitrary polygons [12], but these mean value coordinates can be negative for concave polygons.
The same holds for metric [21], Poisson [18], and Gordon–Wixom coordinates [2]. Instead, positive mean
value [19], positive Gordon–Wixom [22], and power coordinates [3] are positive inside arbitrary polygons,
but not smooth. Blended barycentric coordinates [1] overcome this limitation, but they depend on an initial
triangulation of Ω.

The only known coordinates that are non-negative for arbitrary polygons and polyhedra and at least C 1

are harmonic [15], maximum entropy [13], and local barycentric coordinates [29, 25], but they do not have a
closed form and can only be approximated numerically.

1.2 Contributions

In this paper we propose a simple, iterative modification of planar mean value coordinates that effectively
reduces negative coordinate values and related deformation artefacts after few iterations (see Figure 1). Like
mean value coordinates, these iterative coordinates are smooth (C∞), provided that the same number of
iterations is used for all domain points, and they are guaranteed to be non-negative after a finite number
of iterations. While iterative coordinates do not have a simple closed form, they can be evaluated exactly
at any point v ∈ Ω with a simple and efficient algorithm (Section 5). After providing some preliminaries
and introducing a novel representation of mean value coordinates in terms of circumcentre coordinates
(Section 2), we describe the construction of iterative coordinates for arbitrary polygons (Section 3), prove
their properties (Section 4), and discuss their limitations and possible directions for future work (Section 6).

2 Background

LetΩ be a simple planar polygon with n vertices v1, . . . , vn ∈R2. Without loss of generality, we assume that the
vertices are given in counterclockwise order. We further consider indices periodically over the range 1, . . . , n
and hence identify the index n +1 with 1 and the index 0 with n .

2.1 Three-point coordinates

If Ω is a convex polygon, then Floater, Hormann, and Kós [9] show that the functions wi ,p : int(Ω) → R
for i = 1, . . . , n with

wi ,p (v ) =
ri+1(v )

p Ai−1(v )− ri (v )
p Bi (v ) + ri−1(v )

p Ai (v )
Ai−1(v )Ai (v )

, (2)
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Figure 2: Notation of distances, areas, and signed angles.

where ri (v ) = ‖vi − v ‖ and Ai (v ) and Bi (v ) are the signed areas of the triangles [v, vi , vi+1] and [v, vi−1, vi+1],
respectively (see Figure 2), are homogeneous coordinates of v with respect to Ω, that is, they satisfy

n
∑

i=1

wi ,p (v )(vi − v ) = 0

for any p ∈R. They call them three-point coordinates, because each wi ,p depends only on vi−1, vi , and vi+1,
and they prove that Wachspress, mean value, and discrete harmonic coordinates are special cases of the
normalized three-point coordinates

λi ,p =
wi ,p

∑n
j=1 w j ,p

, i = 1, . . . , n ,

for p = 0, p = 1, and p = 2, respectively.

2.2 Cyclic polygons

Floater, Hormann, and Kós [9] also show that Wachspress and discrete harmonic coordinates are identical
for any v inside a convex cyclic polygon Ωwith radius R . We further conclude from (2) that all normalized
three-point coordinates are identical at the circumcentre �v of Ω, because the common factor R p = r p

i
for i = 1, . . . , n in the numerators of the homogeneous coordinates wi ,p cancels out in the normalization. As
three-point coordinates are invariant to similarities, we can assume R = 1, so that (2) simplifies to

�wi =
Ai−1−Bi +Ai

Ai−1Ai
=

Ci

Ai−1Ai
, i = 1, . . . , n , (3)

where Ci is the signed area of the triangle [vi−1, vi , vi+1] (see Figure 2). SinceΩ is convex, these �wi are positive,
and we call them the circumcentre coordinates of the cyclic polygon Ω.

Remark 1. The �wi in (3) are homogeneous coordinates of the circumcentre �v , even if Ω is self-intersecting
or if �v lies outside Ω, but they are not necessarily positive in either case.

2.3 Mean value coordinates

The mean value coordinates λi ,1 are the only three-point coordinates that extend to concave polygons, and
they can also be defined via normalization of the homogeneous coordinates

ŵi =
tan(αi−1/2) + tan(αi /2)

ri
, i = 1, . . . , n , (4)

where αi (v ) denotes the signed angle in the triangle [v, vi , vi+1] at v (see Figure 2), because ŵi =wi ,1/2 [9].
Besides these known definitions, we observe that mean value coordinates can alternatively be derived by
considering the cyclic polygon Ω′ with vertices v ′i = v + (vi − v )/ri , i = 1, . . . , n , that we get by projecting the
vertices of Ω onto the unit circle around v .

Lemma 2. The mean value coordinates of v with respect to Ω are equal to the scaled and normalized circum-
centre coordinates of Ω′,

λi ,1 =
�w ′

i /ri
∑n

j=1 �w
′
j /r j

, i = 1, . . . , n .
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k = 0 k = 2 k = 4k = 3k = 1

Figure 3: The main idea of iterative coordinates is to project the polygon Ω (left) onto the unit circle around v (k = 0)
and then iteratively apply midpoint averaging plus rescaling to the vertices of the resulting cyclic polygon (k = 1, 2, . . . ).
The top and bottom row illustrate the effect of this procedure for the two interior points of Ω shown on the left.
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Figure 4: Notation of vertices and angles used for describing midpoint averaging plus rescaling.

Proof. The statement follows by first noticing that the projection does not change the angles around v , that
is, α′i =αi , and then using simple trigonometry, as in [9], to find that

ŵi ri = tan
αi−1

2
+ tan

αi

2
= tan

α′i−1

2
+ tan

α′i
2
=

1

2

C ′i
A′i−1A′i

=
�w ′

i

2

for i = 1, . . . , n .

3 Iterative coordinates

From Lemma 2 it is easy to deduce the known fact that mean value coordinates are positive for any v inside
the kernel of Ω, because Ω′ is convex in that case. Otherwise, Ω′ is self-intersecting, which may result in
negative coordinates. To overcome this limitation, we propose to iteratively apply a simple smoothing
operator to ‘untangle’ the projected polygon (see Figure 3).

3.1 Construction

Let v ∈ int(Ω) be any point from the interior of Ω. In order to keep the formulas simple, we use the fact that
homogeneous coordinates are invariant to translations and shift everything by −v , so that (0, 0) becomes the
circumcentre. That is, we let Ω0 be the cyclic polygon with vertices

v 0
i =

vi − v

ri
, i = 1, . . . , n , (5)

and then compute cyclic polygons Ωk for k = 1, 2, . . . , with vertices v k
i defined iteratively as

v k
i =

v k−1
i + v k−1

i+1

s k
i

, s k
i =





v k−1
i + v k−1

i+1





, i = 1, . . . , n , (6)

as shown in Figure 4. This smoothing process is quite effective at ‘untangling’ Ω0 (see Figure 3), and we will
prove below that it yields a convex cyclic polygon Ωk after a finite number of iterations (see Section 4). But
before going into technical details, let us first explain how to use this approach for deriving novel generalized
barycentric coordinates of v with respect to Ω.
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Figure 5: Comparison of iterative coordinates for different values of k for a concave polygon.

To this end, let Vk = (v k
1 , . . . , v k

n ) be the 2×n matrices that contain the vertices of Ωk as columns, and
likewise V = (v1, . . . , vn ) for the given polygon Ω. We can then express the initial projection in (5) and the
recurrence relation in (6) as

V0 =
�

V − v eT
�

S0, Vk =Vk−1M Sk , k ∈N, (7)

where

e =











1
1
...
1
1











, S0 = diag

�

1

r1
, . . . ,

1

rn

�

, Sk = diag

�

1

s k
1

, . . . ,
1

s k
n

�

, M =











1 0 · · · 0 1
1 1 · · · 0 0
...

...
...

...
...

0 · · · 1 1 0
0 · · · 0 1 1











. (8)

It follows that
Vk =

�

V − v eT
�

Tk , k ∈N0,

where the matrices Tk are defined recursively as

T0 = S0, Tk = Tk−1M Sk , k ∈N. (9)

Denoting the circumcentre coordinates of Ωk by �wk = ( �w k
1 , . . . , �w k

n )
T, we find that

wk =
�

w k
1 , . . . , w k

n

�T
= Tk �wk (10)

are homogeneous coordinates of v with respect to Ω, because

n
∑

i=1

w k
i (vi − v ) =

�

V − v eT
�

wk =Vk �wk =
n
∑

i=1

�w k
i v k

i = 0. (11)

Definition 3. For any k ∈N0, the iterative coordinates λk
i : Ω→R, i = 1, . . . , n are defined as

λk
i =

w k
i

∑n
j=1 w k

j

, i = 1, . . . , n . (12)

By Lemma 2, it is clear that iterative coordinates include mean value coordinates as the special case k = 0.

3.2 Examples

Figure 5 shows the effect that the smoothing iterations have on the corresponding barycentric coordinates
in the case of concave polygons. While mean value coordinates (k = 0) may have rather large negative
values, especially close to edges adjacent to concave corners, a small number of iterations usually suffices to
reduce the magnitude of these negative values considerably. As k grows, the coordinate functions eventually
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source
k = 0 k = 1 k = 2 k = 3 k = 4

Figure 6: Deformation of a source image (left), obtained by moving four vertices (blue) of the control polygon, using
iterative coordinates with respect to the source control polygon (top row). The deformation artefacts (close-ups) are
caused by the negative values (red) of the indicated coordinate function (bottom row), which are relatively large for mean
value coordinates (k = 0), but quickly become negligible as the number of iterations increases (k = 1, 2, 3, 4). Function
values are visualized using the colour bar in Figure 5.

become non-negative (see Section 4), and further increasing the number of iterations has a marginal effect
on the shape of the coordinate functions.

Figure 6 illustrates the impact that this behaviour has in the context of shape deformation. Large negative
coordinate values can lead to severe deformation artefacts if the corresponding control polygon vertex
is moved, because they induce a significant shift in the opposite direction. As k increases, the effect of
negative values quickly becomes negligible and these artefacts disappear, even before the coordinate function
becomes non-negative. For example, the coordinate function shown in Figure 6 is completely non-negative
only for k ≥ 7, but the deformation artefact disappears already for k = 4, when the function is still slightly
negative in the red region with a smallest function value of about −0.0168388.

4 Properties

One of the key properties of iterative coordinates is that they are guaranteed to be non-negative after a finite
number of iterations. To prove this claim, let us first analyse what happens to the cyclic polygons Ωk in the
limit, as k approaches infinity.

Lemma 4. The sequence (Ωk )k∈N0
of cyclic polygons defined in Section 3.1 converges to a regular polygon.

Proof. The iterative procedure in (6) for computing Ωk from Ωk−1 for k ∈N implies (see Figure 4) that the
signed angles αk

i =�(v k
i , v k

i+1) satisfy the recurrence relation

αk
i =

αk−1
i +αk−1

i+1

2
, i = 1, . . . , n . (13)

Gathering all angles in the vector αk = (αk
1 , . . . ,αk

n )
T ∈Rn , this relation can be expressed as

αk = Aαk−1 = A2αk−2 = · · ·= Akα0, k ∈N,

where A =M T/2 with M defined as in (8). As A is a circulant matrix, it is well known [4] that the eigenvectors
of A are orthogonal and that µ0 = 1 is the unique dominant eigenvalue of A with normalized eigenvector
e0 = e /

p
n . Therefore, as shown in [6],

lim
k→∞
αk = (e

T

0 α0)e0 =
α0

1+ · · ·+α
0
np

n
e0 =

�

2π

n
, . . . ,

2π

n

�T

,

which means that the limit polygon is regular.

Lemma 4 implies that all αk
i are positive and hence Ωk is convex if k is large enough, which in turn means

that the iterative coordinates λk
i are also positive.

Corollary 5. The iterative coordinates λk
i in (12) are positive over int(Ω) for k sufficiently large.
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(n , kmin) = (8, 3) (10, 3) (12, 18) (27, 38) (38, 76) (42, 25) (42, 58)
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Figure 7: Examples of concave polygons with different numbers of n vertices, for which the iterative coordinates are
non-negative after the stated number of kmin iterations (determined by regularly sampling the polygon’s bounding square
and computing the coordinates for the interior sample points in double precision at a resolution of 103 ×103 for the
whole square and an effective resolution of 106×106 in the regions where the largest number of iterations is needed).
The colour-coding refers to the number of iterations required to get positive coordinates at the individual interior points.

Proof. By (3), the circumcentre coordinates �wk of Ωk are positive if Ωk is convex. Since it follows from (9)
and by induction over k that Tk is a non-negative matrix with strictly positive diagonal entries for any k ∈N0,
we conclude that the homogeneous coordinates wk = Tk �wk of v are positive, too, and so are the iterative
coordinates λk

i .

Clearly, the smallest number of iterations k for which the iterative coordinates λk
i (v ) at some v ∈ int(Ω) are

positive depends on v , as shown in Figure 7, and the largest number of iterations is typically required in
the extremities of a shape, like the tail and nose of the dolphin, as the fold-overs of the projected cyclic
polygon Ω0 are the worst for points in these regions.

Let us now derive a lower bound for the number of iterations, such that the iterative coordinates for all
interior points of Ω are positive.

Theorem 6. If

k ≥
2

π2
n 2 log(n +1), (14)

then αk
i > 0 for i = 1, . . . , n.

Proof. Let i ∈ C be the imaginary unit and ω = exp(2πi/n ) ∈ C be an n-th root of unity. Then it is well
known [4] that

µ j =
1+ω j

2
=ω j /2 cos

jπ

n
∈C, j = 0, . . . , n −1 (15)

are the eigenvalues of A =M T/2, where M is defined as in (8), with normalized eigenvectors

e j =
�

1,ω j ,ω2 j , . . . ,ω(n−1) j
�T
/
p

n ∈Cn , j = 0, . . . , n −1.

Representing α0 with respect to these orthonormal eigenvectors as α0 =
∑n−1

j=0 c j e j with coefficients

c j = eHj α0 =
1
p

n

n−1
∑

l=0

ω− j lα0
l+1, j = 0, . . . , n , (16)

we have αk =
∑n−1

j=0 c jµ j
k e j and can write the elements of αk as

αk
i+1 =

1
p

n

n−1
∑

j=0

c jµ j
kωi j , i = 0, . . . , n −1.

Splitting off the first term and using the symmetry µ j =µn− j for j = 1, . . . , n−1 as well as (15) and (16), we get

αk
i+1 =

2π

n
+

1

n

n−1
∑

j=1

µ j
k

n−1
∑

l=0

ω j (i−l )α0
l+1

=
2π

n
+

1

n

n ′
∑

j=1

cosk jπ

n

n−1
∑

l=0

�

ω j k/2ω j (i−l )+ω− j k/2ω(n− j )(i−l )
�

α0
l+1

=
2π

n
+

1

n

n ′
∑

j=1

cosk jπ

n

n−1
∑

l=0

2 cos
2 j (i − l +k/2)π

n
α0

l+1,

7



(n , kmin) = (18, 7)
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Figure 8: Number of iterations required to get positive coordinates at the individual interior points of the (closed) Hilbert
curves H2, H3, H4 (from left to right); cf. Figure 7.

where n ′ = b(n −1)/2c, and further

αk
i+1 >

2π

n
−2π

n ′
∑

j=1

cosk jπ

n
, i = 0, . . . , n −1, (17)

because cos x ∈ [−1,1] for any x ∈ R and α0
l ∈ (−π,π) for l = 1, . . . , n . We now observe that the function

f (x ) = log(cos x ) + x 2/2 is negative for x ∈ (0,π/2), because f (0) = 0 and f ′(x ) = x − tan x < 0, hence

log
�

cos
π

n

�

<−
(π/n )2

2
.

Applying exponentiation to both sides and using (14), we then have

cosk π

n
< exp

�

−
k (π/n )2

2

�

≤ exp
�

− log(n +1)
�

=
1

n +1
.

Recalling that cos(2x )≤ cos4 x for any x ∈R and therefore

cos
jπ

n
≤ cos

2π

n
≤ cos4 π

n
, j = 2, . . . , n ′,

we finally conclude from (17) that

αk
i >

2π

n
−

2π

n +1
−

nπ

(n +1)4
> 0, i = 1, . . . , n .

While the lower bound in (14) guarantees that the iterative coordinates for any polygon with n vertices are
positive for all interior points of Ω, Figure 7 shows that usually a much smaller number of kmin iterations
suffices. The reason for this is two-fold. On the one hand, the circumcentre coordinates �wk of Ωk may be
positive even if some of the angles αk

i are negative. More precisely, �w k
i /2= tan(αk

i−1/2)+ tan(αk
i /2)> 0, if and

only if αk
i−1+α

k
i > 0. This explains the green triangle of points with non-negative mean value coordinates

(k = 0) in the first example in Figure 7, even though these points do not belong to the kernel of this polygon,
which is empty. On the other hand, the multiplication of �wk with Tk to get wk has another k -fold smoothing
effect on the values �w k

i , due to the matrix M that is contained k times in Tk .
However, there also exist examples where kmin is rather large and presumably on the order of O (n 2).

Figure 8 shows examples of Hilbert curves of m-th order for m = 2, 3, 4. They are constructed by connecting
the vertices of a regular 2m ×2m grid, following a recursive pattern (and allowing some vertices to be collinear
with its neighbours), plus two extra vertices to get a closed polygon with n = 4m + 2 vertices. For these
polygons, the number of iterations needed to get positive coordinates ranges from about n 2/360 near the
centre of the polygon to roughly n 2/36 in the extremities close to the bottom left and bottom right. But even
in these examples kmin is still much smaller than the lower bound in Theorem 6.

We conclude this section by formally proving that iterative coordinates satisfy all the properties listed in
Section 1.

Theorem 7. The iterative coordinates λk
i in (12) are smooth and non-negative barycentric coordinates for k

sufficiently large. They satisfy the Lagrange property and are linear along the edges of Ω.
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Proof. We first remark that iterative coordinates are well-defined over the interior of Ω. Indeed, if v ∈ int(Ω),
then all vertices v k

i in (5) and (6) are well-defined, because ri > 0 and αi = α0
i ∈ (−π,π) for i = 1, . . . , n , so

that αk
i ∈ (−π,π) by (13) and s k

i > 0 for i = 1, . . . , n and k ∈ N. This further implies that the circumcentre
coordinates �w k

i = 2
�

tan(αk
i−1/2) + tan(αk

i /2)
�

, the matrices Tk , and the homogeneous coordinates w k
i are

well-defined for i = 1, . . . , n and k ∈ N0. Moreover, if k is sufficiently large, then the w k
i are positive and

the λk
i well-defined for i = 1, . . . , n , because the denominator in (12) is positive, too.

The partition of unity and the linear reproduction properties then follow directly from the definition
of λk

i in (12) and (11). Moreover, as a combination of sums, products, divisions, and compositions of analytic
functions, the λk

i are analytic, too, and therefore smooth (C∞).
To prove the Lagrange property, let w̃k = (w̃ k

1 , . . . , w̃ k
n ) be the homogeneous iterative coordinates of

(0,0) with respect to Ω0. Then, w̃k = T̃k �wk , as in (10), with T̃0 = I and T̃k = T̃k−1M Sk for k ∈ N as in (9),
and wk = S0w̃k , that is, w k

i = w̃ k
i /ri . Now, as v approaches vl for some fixed l ∈ {1, . . . , n}, the distances

ri = ‖vi − v ‖ converge to ‖vi − vl ‖ and the w̃ k
i remain finite. Therefore,

lim
v→vl

�

w k
i rl

�

= lim
v→vl

�

w̃ k
i rl /ri

�

= w̃ k
i δi ,l

and consequently

lim
v→vl

λk
i = lim

v→vl

�

w k
i rl

Á n
∑

j=1

w k
j rl

�

=δi ,l , i = 1, . . . , n .

In other words, the Lagrange property is essentially a consequence of the initial projection in (5).
To handle the case when v approaches v̄ = (1−µ)vl +µvl+1 for some fixed l ∈ {1, . . . , n} and µ ∈ (0, 1), we

let t̄ k
i , j = s̄ t k

i , j for i , j = 1, . . . , n and k ∈N0, where t k
i , j is the (i , j )-th entry of Tk and s̄ = s 1

l = ‖v
0
l + v 0

l+1‖. Then,
limv→v̄ s̄ = 0, and it follows from (9) that

lim
v→v̄

t̄ 1
i , j =











1/rl (v̄ ), if i = l and j = l ,

1/rl+1(v̄ ), if i = l +1 and j = l ,

0, otherwise.

More generally, we conclude by induction over k that

lim
v→v̄

t̄ k
i , j = 0, i 6= l , l +1, j = 1, . . . , n

and
rl (v̄ ) lim

v→v̄
t̄ k

l , j = rl+1(v̄ ) lim
v→v̄

t̄ k
l+1, j , j = 1, . . . , n

for any k ∈ N. In other words, the rows of T̄k = s̄ Tk vanish in the limit, except for the l -th and the
(l +1)-th row, which are equal up to a constant factor. Consequently, the scaled homogeneous coordinates
w̄k = s̄ wk = T̄k �wk of v satisfy

lim
v→v̄
(w̄ k

i ) = 0, i 6= l , l +1

and
rl (v̄ ) lim

v→v̄

�

w̄ k
l

�

= rl+1(v̄ ) lim
v→v̄

�

w̄ k
l+1

�

> 0, (18)

where the last inequality follows from the facts that the circumcentre coordinates �wk of Ω are positive for k
sufficiently large and that T̄k is non-negative with strictly positive entries t̄ k

l ,l and t̄ k
l+1,l , even in the limit.

Combining these observations, we have

lim
v→v̄

λk
i = lim

v→v̄

s̄ w k
i

∑n
j=1 s̄ w k

j

= lim
v→v̄

w̄ k
i

∑n
j=1 w̄ k

j

= lim
v→v̄

w̄ k
i

w̄ k
l + w̄ k

l+1

,

hence limv→v̄ λ
k
i = 0 for i 6= l , l +1 and, by (18),

lim
v→v̄

λk
l =

rl+1(v̄ )
rl (v̄ ) + rl+1(v̄ )

= 1−µ, lim
v→v̄

λk
l+1 =

rl (v̄ )
rl (v̄ ) + rl+1(v̄ )

=µ,

which proves the linear behaviour on the open edge (vl , vl+1).
Finally, the non-negativity of iterative coordinates follows from Corollary 5, the Lagrange property, and

the linearity on the edges.
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Algorithm 1 Iterative coordinates (with O (n ·K ·min(n , K )) time and O (n ·min(n , K )) space complexity)

Input: planar polygon Ωwith vertices v1, . . . , vn , point v ∈ int(Ω), number of iterations K
Output: iterative coordinates λK

1 , . . . ,λK
n of v with respect to Ω

1: initialize W = 0, s ∈Rn+1, w = 0 ∈Rn , V ∈ (R2)n+1, and T = 0 ∈Rn×(n+1)

2: for i = 1 to n do . initial projection step
3: u := vi − v , r := ‖u‖, Vi := u/r , Ti ,i := 1/r . store V0 in V and T0 in T
4: Vn+1 :=V1; T1,n+1 := T1,1

5: for k = 1 to K do . perform K smoothing steps
6: for i = 1 to n do . overwrite V with V M Sk

7: u :=Vi +Vi+1, si := ‖u‖, Vi := u/si

8: Vn+1 :=V1

9: for i = 1 to n do . overwrite T with T M Sk

10: for J = n −min(k , n −1) to n do
11: if 1 k < n −1 then j := 1+ (i + J −1)mod n else j := J
12: Ti , j := (Ti , j +Ti , j+1)/s j

13: Ti ,n+1 := Ti ,1

14: for i = 1 to n do
15: si := det(Vi , Vi+1)/(1+ 〈Vi , Vi+1〉) . compute tan(αK

i /2)
16: sn+1 := s1

17: for i = n +1 downto 2 do . compute circumcentre coordinates �wK of ΩK

18: si := si−1+ si . overwrite si with �w K
i

19: s1 := sn+1

20: for i = 1 to n do . compute homogeneous coordinates wK of v
21: for J = n −min(K , n −1) to n do
22: j := 1+ (i + J −1)mod n
23: wi :=wi +Ti , j s j

24: W :=W +wi . accumulate sum of homogeneous coordinates

25: for i = 1 to n do . compute iterative coordinates λK
1 , . . . ,λK

n of v
26: wi :=wi /W . overwrite wi with λK

i

27: return (w1, . . . , wn )

5 Implementation

Given a polygon Ω, a point v ∈ int(Ω), and a number of iterations K , a straightforward implementation of
iterative coordinates can be derived directly from the construction in Section 3.1, as outlined in Algorithm 1.
We first compute the matrices V0 and T0 (lines 2–4) and then construct the vertices Vk of the cyclic polygonsΩk

as well as the matrices Tk for k = 1, . . . , K (lines 5–13) by carrying out the required smoothing and scaling
steps as stated in (7) and (9). Note that we always add a copy of the first vertex of Vk and the first column
of Tk at the end of Vk and Tk (lines 4, 8, and 13), so that Vk−1 and Tk−1 can be overwritten by Vk and Tk in each
iteration. In the next step, we compute the circumcentre coordinates �wK of ΩK (lines 14–19), up to a factor
of 2 that cancels out at the end, using the tangent formula �w K

i = 2
�

tan(αK
i−1/2)+ tan(αK

i /2)
�

and recalling that

tan
αK

i

2
=

sinαK
i

1+ cosαK
i

=
det

�

v K
i , v K

i+1

�

1+



v K
i , v K

i+1

� .

Finally, we multiply �wK with TK to get the homogeneous coordinates wK (lines 20–23) and normalize the
latter (lines 25–26) to obtain the iterative coordinates λK

1 , . . . ,λK
n of v with respect to Ω. Note that we exploit

the fact that Tk is a periodic banded matrix with bandwidth k +1 in lines 10, 11 and 21, 22 to reduce the time
complexity of the algorithm from O (n 2K ) to O (n K 2) if K < n . We further optimized Algorithm 1 with respect
to memory consumption, so that it gets by with storing only the two vectors s ∈Rn+1 and w ∈Rn , the vector
of 2D points V ∈ (R2)n+1, and the matrix T ∈ Rn×(n+1). Hence, the space complexity is O (n 2) and O (n K )
for K < n if only the non-zero values of T are stored.

An even more efficient algorithm can be designed (see Algorithm 2) by observing that the vertices v k
i of

the cyclic polygonsΩk are actually not needed, neither for computing �wK , nor for constructing the matrix TK .

1We wish to thank Sundararajan Natarajan for noticing that this if-statement, which is missing in the published version of this article,
is necessary to guarantee that only those Ti , j that are not needed for further computations are overwritten by their new values.
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Algorithm 2 Iterative coordinates (with O (n ·K ) time and O (n ·K ) space complexity)

Input: planar polygon Ωwith vertices v1, . . . , vn , point v ∈ int(Ω), number of iterations K
Output: iterative coordinates λK

1 , . . . ,λK
n of v with respect to Ω

1: initialize W = 0, w ∈Rn+1, V ∈ (R2)n+1, and β ∈R(K +1)×(n+1)

2: for i = 1 to n do . compute initial shift
3: Vi := vi − v
4: Vn+1 :=V1

5: for i = 1 to n do . compute initial angles
6: β0,i := atan2

�

det(Vi , Vi+1), 〈Vi , Vi+1〉
�

/2 . store α0
i /2 in β0,i

7: β0,n+1 :=β0,1

8: for k = 1 to K do . perform K smoothing steps
9: for i = 1 to n do

10: βk ,i := (βk−1,i +βk−1,i+1)/2
11: βk ,n+1 :=βk ,1

12: for i = 1 to n do
13: wi := tanβK ,i . compute tan(αK

i /2)
14: wn+1 :=w1

15: for i = n +1 downto 2 do . compute circumcentre coordinates �wK of ΩK

16: wi :=wi−1+wi . overwrite wi with �w K
i

17: w1 :=wn+1

18: for k = K downto 1 do . compute homogeneous coordinates wK of v
19: for i = 1 to n do .multiply with Sk

20: wi :=wi /cosβk−1,i

21: wn+1 :=w1

22: for i = n +1 downto 2 do .multiply with M
23: wi :=wi−1+wi

24: w1 :=wn+1

25: for i = 1 to n do .multiply with S0

26: wi :=wi /‖Vi ‖
27: W :=W +wi . accumulate sum of homogeneous coordinates

28: for i = 1 to n do . compute iterative coordinates λK
1 , . . . ,λK

n of v
29: wi :=wi /W . overwrite wi with λK

i

30: return (w1, . . . , wn )

Indeed, since s k
i = ‖v

k−1
i + v k−1

i+1 ‖= 2 cosαk−1
i (see Figure 4) and �w K

i = 2
�

tan(αK
i−1/2)+ tan(αK

i /2)
�

, all we need
are the angles αk

i for i = 1, . . . , n and k = 0, . . . , K , or rather the half angles βk ,i =αk
i /2, which turns out to be

even more efficient. For k = 0, we get these angles directly from the vertices vi ofΩ and the point v (lines 2–7),
and for k = 1, . . . , K , we use the recurrence relation in (13) (lines 8–11). After computing the circumcentre
coordinates �wK of ΩK (lines 12–17), we then determine the homogeneous coordinates wK by successively
multiplying �wK with Sk (lines 19–21), up to a factor of 2 that cancels out at the end, and M (lines 22–24)
for k = K , K −1, . . . , 1 (line 18) and finally by S0 (lines 25–26), which is correct, because TK = S0M S1 . . . M SK ,
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Figure 9: Average timings in µs for computing the mean value coordinates (K = 0) of a single point with the algorithm
in [12] and its iterative coordinates for K = 1, . . . , 7 using Algorithm 1 (left) and Algorithm 2 (right).
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source

kmin = 4

k = 0 k = 1 k = 2 k = 3 k = 4

Figure 10: Deformation of a source image that is not entirely inside the source control polygon (left), obtained by moving
four vertices (blue), using iterative coordinates (top row) and one of the corresponding iterative coordinate functions
(bottom row). Function values are visualized using the colour bar in Figure 5.

by (9). The time complexity of this algorithm is only O (n K ), which clearly beats Algorithm 1, while the space
complexity of O (n K ) is the same for K ≤ n and slightly worse for K > n .

We implemented both algorithms, as well as mean value coordinates, following [12], in C++ on a Win-
dows 10 laptop with 1.8 GHz Intel Core i7-8565U processor and 16 GB RAM, and the average timings for
different values of n and K are reported in Figure 9. As expected, Algorithm 2 outperforms Algorithm 1,
except for k = 1 and n < 40, when Algorithm 1 has a slight edge. Compared to mean value coordinates, the
computation of iterative coordinates with Algorithm 2 is roughly twice as costly for K = 2 and about three
times for K = 7.

For generating the image deformation examples in Figures 1, 6, and 10, we implemented an interactive
application that is based on a GPU version of Algorithm 2. More specifically, we cover the source image with
a planar regular quadrilateral mesh M that has as many vertices as the image has pixels, and then render
this mesh as follows. In the vertex shader, we compute for each mesh vertex v its iterative coordinates λK

i
with respect to the source control polygon Ω and apply them to the vertices of the target control polygon Ω′,
thus generating the deformed mesh vertex v ′ =

∑n
i=1λ

K
i v ′i . We then pass v ′ as position and the original

position v , scaled to [0, 1]2, as texture attribute on to the rasterizer, and the fragment shader simply samples
the source image at the interpolated texture coordinates. In this way, the deformed quadrilateral mesh M ′ is
rendered using the source image as a texture, thus giving the deformed image. Even on a low-end Intel UHD
Graphics 620 unit, the application remains interactive up to n = 50 and K = 7 and an image resolution of
600×600, that is, for a mesh with 360 000 vertices.

6 Conclusion

Iterative coordinates are a simple, yet powerful and interesting modification of mean value coordinates.
On the theoretical side, they are guaranteed to be non-negative and to possess all desired properties of
generalized barycentric coordinates after a finite number of iterations. On the practical side, the unwanted
effects that are typically caused by negative coordinate values either disappear or fall below a tolerable
threshold after few iterations. Hence, they can serve as a valuable extension to any application that is
based on mean value coordinates by providing the user with the option to interactively explore the effect of
increasing the number of iterations.

6.1 Limitations

One feature of mean value coordinates, which distinguishes them from other generalized barycentric
coordinates, is that they are also well-defined for points outside the polygon Ω. To some extent, this property
carries over to iterative coordinates and thus allows us to use them for deforming an image, even if it is
not entirely contained in the control polygon, as shown in Figure 10. However, while the artefacts due to
negative coordinate values still disappear as expected inside the polygon, the deformation result tends to
deteriorate outside the polygon.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 16 kmin = 63

Figure 11: Example of an iterative coordinate function with poles occurring outside the polygon (near the bottom
right vertex) for k ≥ 3 iterations. Inside the polygon, all coordinates are well-defined and non-negative for k ≥ 63. The
colour-coding refers to the colour bars in Figures 5 and 7.

Besides this practical shortcoming, points outside Ω also have some theoretical issues. On the one hand,
Lemma 4 does not extend to the exterior of Ω. In fact, if v is outside Ω, then the angles α0

i add up to 0 instead
of 2π, and the polygon Ωk collapses to a single point in the limit. After all, this is not too surprising, since it is
clearly impossible for a point outside the convex hull ofΩ to have only non-negative barycentric coordinates.
On the other hand, it may happen that the denominator in (12) vanishes at certain points outside Ω, thus
leading to undefined coordinate values, although we experienced this only for rather extreme shapes like
the “spiral” polygon in Figure 11. Moreover, our experiments indicate that iterative coordinates for k ≥ 1,
unlike mean value coordinates, are only C 0 across the edges of Ω. Similar problems occur if Ω has more than
one component or holes, even though mean value coordinates are still well-defined in this case [12]. Overall,
we therefore recommend using iterative coordinates only for the interior of a simple polygon Ω.

6.2 Future work

Regarding the theory of iterative coordinates, we have to admit that so far we did not manage to prove
that iterative coordinates are well-defined inside Ω for k smaller than the lower bound in (14). In fact,
our current argument for showing that the denominator in (12) does not vanish relies on the positivity of
the homogeneous coordinates w k

i , which is not necessarily the case for small values of k . However, we
strongly believe that there exists a more refined argument, like the one in [12] for showing the positivity of the
denominator for mean value coordinates (k = 0) despite the potential negativity of some of the w k

i , which
can be used to prove our conjecture that the denominator in (12) is positive for all v ∈ int(Ω) and all k ∈N0,
since this is what we consistently observed in our numerical examples.

An even more desirable result of future work would be an explicit formula or an efficient algorithm for
computing the limit iterative coordinates limk→∞λ

k
i , which are guaranteed to be positive by Lemma 4 and

therefore also well-defined, but so far all our attempts to determine this limit were without avail.
Finally, it would be nice to extend the idea of iterative coordinates to polyhedra in 3D. In analogy to

our 2D construction, we would project the polyhedron onto the unit sphere around v and then smooth
the resulting spherical polyhedron until it ‘untangles’ and all fold-overs disappear. However, [11] show that
the 3D equivalent of our simple midpoint averaging and rescaling procedure is bound to fail, because the
spherical polyhedra will not converge to some stable, convex configuration as in 2D, but instead collapse
to a single point on the unit sphere. While [11] are able to fix this problem in the context of spherical
parameterization by designing a non-linear smoothing operator, it remains unclear how to carry over their
non-linear smoothing steps to the level of barycentric coordinates, that is, how to define the non-linear
equivalent of our matrices Tk .
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