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Abstract

We derive a formula for weighted polynomial least squares approx-
imation which expresses the approximant as a convex combination of
interpolants. There is a similar formula for Lo approximation and the
same principle applies to multivariate approximation.
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1 Introduction

We usually think of least squares approximation as an alternative to inter-
polation. It is a way of reducing data and of avoiding the sometimes poor
behaviour of interpolation due to the spacing of the points or noise in the
data. In this paper we show that the two are nevertheless closely related. The
approximant can be expressed as a weighted average of many interpolants,
which are somehow smoothed out by this averaging.

Let x1, 25, ..., 2y, m > 1, be distinct points in R, and let f be some real-
valued function defined at these points. Let wq,ws, ..., w,, > 0 be positive
weights associated with the points. As is well known, for any degree n,
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0 < n < m — 1, the associated least squares approximation is the unique
polynomial p(x) of degree at most n that minimizes

Z wi(f (i) = pla:))*. (1)

One approach to finding p is to represent it in monomial form, and to find
its coefficients by solving the normal equations or using QR factorization.
Another is to construct orthogonal polynomials with respect to the points
and weights, and then to find p as a linear combination of these. There are
many texts on this topic, see for example, [2, Sec. 3.5] and [3, Chap. 5.

In this paper we derive a formula for p which expresses it as a weighted
average of all the interpolants to f over sets of n+1 points among x1, ..., Z,,.
Despite its simplicity, we have not been able to find it in the mathematical
literature. The formula is ‘combinatorial” and contains (nrf:l) terms and so
we are not suggesting to use it as a method of computing p. However, it is
convenient for analyzing the influence of the weights on p. For example, as is
well known, if we let the weights at one or more points tend to infinity, in the
limit, p interpolates f at these points. One could find this limiting polynomial
by imposing interpolation constraints at these points and minimizing over the
remaining ones, using Lagrange multipliers. We instead obtain a formula as
a weighted average of interpolants.

There is a similar formula for Ly approximation and the same principle
applies to multivariate approximation.

2 Interpolation formula

The interpolation formula is as follows. Let Py denote the set of all subsets of
{1,...,m} of cardinality N. The cardinality of Py is (%) Foreach K € P, 4
let pg(x) denote the polynomial of degree at most n that interpolates f at
the points z;, i € K, let wg be the product of weights

WK = H Wi,
iceK

and let Dg be the product of squared distances



with the convention that this product is 1 if n = 0. Let Ay = wx Dk.
We will show

Theorem 1 For x € R,

)= Y M)/ Y e (3)
KePn4+1 KePni1
For example, in the linear case, the theorem tells us that
plr)= Y Az’jpz'j(l‘)/ > i
{i.7}eP2 {i,j}ePs
where p;; is the linear interpolant to f at z; and x; and
)\ij = ’LUZ"LU]'(.Z']' — [Bi)z. (4>
In the quadratic case,
p(z) = Z Az’jkpijk:(ﬂ?)/ Z Aijks
{i,5,k}€P3 {i,5,k}€P3

where
/\z‘jk = wz‘ijk:(xj - xz‘)2($k — xz‘)2($k - l'j)27 (5)

and p;j; is the quadratic interpolant to f at z;,z;, z;. At the other extreme,
if n =m — 1, p interpolates f. If n = m — 2, then

p(r) = inpu,...,m}\i/zxi,
i=1 i=1

where, by cancelling common factors in Agy .,

~ 1 1
=] —
w; ]l;Iz (I’j — I‘i)Z

Proof. Let



be the polynomial that minimizes (1). The normal equations for (1) can be
written as Ac = b, where

}:?Uk Ejzukxk e E:lUkIZ

A Swpry Y wpri o S wpat!
- . . . 9
Swgrp Ywprptt e Y wpap
c=(co,c1y...,0,)7, and
T
b = <Z wif (), > wirnf(zp), . -7Zwk$2f($k)> :
and all summations are over k = 1,...,m. By Cramer’s rule, ¢; is the
quotient of determinants ¢; = |A4;|/|A|, 7 =0,1,...,n, where A is as above

and A; is the matrix formed by replacing the (j + 1)-st column of A by b.
We now expand the determinants of A and A;, j = 0,1,...,n. Firstly,
we can write A as the product

wl .. w
" 1 xy
wi1ry - WnIm
A= : :
1 =« "
wixy e Wyl m m

Then, by the Cauchy-Binet theorem [4, p. 1],

A=) wxlVkl, (7)

KePn+1

where Vi is the Vandermonde matrix

n
L om0 afy
n
]_ xkl e Ikl
Vik =]. i
n
1 Ikn ... mkn

and K = {ko,k1,...,k,} with kg < k; < -+ < k,. As is well known, the
determinant of Vi is

Vil= T[] (zs, — 7s.),

0<a<p<n
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and so its square is Dy in (2). While the sign of |V | depends on the ordering

of ko, k1,...,kn, Di does not. Secondly, we can similarly express A; as the
product
w1 w i— i1
" oyt f) ot
W11 WmLm,
Aj = : : : : : )
1 :L'j_l € xj+1 P xn
and using the Cauchy-Binet theorem again,
Al = > wel VIV, (8)
KePpia
where - -
J— J n
1 o $k0 f(xko) xk‘o T xko
Vik=|: : : :
Jj—1 Jj+1 n
Lo my s flow,) x, 0w,

Next observe that the polynomial interpolant px to f can also be written in
monomial form, as

n
pr(x) = ch,Kin,
3=0

and the interpolation conditions give the linear system Vicyx = fx, where
Cx = (CO,Ka Cl,Ky--- 7cn,K)T7 and fK - (f(xk(J)? f(xku)a s 7f(xk:n))T By

Cramer’s rule applied to this linear system, we have c¢;x = |V, k|/|Vk].
Therefore,
N N s ViVl
p(z) = jzocjx = jzo o Vic|?
- S wlVie Pt _ Yy wielViePpic (@)
= 2k wk|Vkl? Yok wil|Vk?
as claimed. a

Figure 1 shows an implementation of the formula of Theorem 1, using
degree n = 1 on the left and degree n = 5 on the right. The weights here are
equal to 1.



L T N R - T - R S )
SoE o
I I - T T

Figure 1: Least squares using degrees n = 1 and n = 5.

3 Some simple consequences

For any » = 0,1,...,n, the r-th derivative of p is also the same weighted
average of the r-th derivatives of the interpolants,

@)= 3 @) 3 A (9)

KePn41 KePp41

and so we have the simple upper and lower bounds

. (r) < (r) < ()
i p (@) <pT(e) < max pic(z).

Figure 2 shows an example of the upper and lower bounds when n = 1 and
r = 0.
Similarly, the approximation error shares the same weighted average,

f@) =p@) = 3 Al(f@) —px(@)/ D A,
and so

fla)=p@) = Y Axo(@){ziiie Kyalf/ D Ax.

KePn4+1 KePni1

where [{z; : i € K}, x]f is the divided difference of f at the points z;, i € K,
and x, and

ox () = [J(x — ).

1€ K



R

Figure 2: Upper and lower bounds with n = 1.

4 Influence of the weights

It is clear from the interpolation formula that if we increase the weight w;
for some i € {1,...,m}, the interpolants px for which i € K will have a
greater influence on p than the others. In the limiting case that w; — oo,
while keeping the other weights fixed, we expect that p will interpolate f
at ;. Similarly, for any distinct ¢, 7, if w;,w; — oo, we expect that p will
interpolate f at both z; and z;. We now confirm this mathematically and
derive a formula.

Let I be some subset of {1,...,m} of cardinality r, where 1 <r <mn+1,
and let gr(z) denote the limit of p(z) as w; — oo for all i € I. Let Py(I)
denote the set of all subsets of {1, ..., m}\I of cardinality N. The cardinality
of Pn(I)is (™))

Corollary 1 Ifr =n -+ 1 then q; = pr while if r < n+ 1,

qr(x) = Z MI,JPIUJ(HS)/ Z 1, (10)

JEPn+1—r(I) JEPnt1-r(1)
where pur; = wyDryy.
Clearly, in both cases q;(x;) = f(x;) for all i € I.

Proof. We split the sums in (3) in both the numerator and the denominator

into two:
IED IS I

KICK K:I¢K
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We then divide both numerator and denominator by w; and use the fact that
when I C K, wi/w; = wg\;. Then letting w; — oo for 7 € I, p(x) converges
to the limit

> rircx Wi Drpx (z)

> rickx WDk

If r = n+1 we must have K = [ in the two sums and we obtain ¢;(z) = pr(z).
If r <n+1 we express K as the disjoint union I U J and change the sum
over K to a sum over J. O

qr(r) =

For example, in the linear case, the limit of p(z) as w; — oo is

Z :uz]pzy / Z Mg

J#i J#i
where
pij = wy(w; — )", (11)
In the quadratic case, the limit of p(x) as w; — oo is

QZ(*/E) - Z Mzgkngk / Z Hijk,

{5k}ePa(i) {5k}ePa(i)
where
ik = wiwg(T; — i) (2 — ) (g, — xj)2- (12)
If the cardinality of [ is greater than 1, there is some cancellation in the
limit formula (10) because
Dy = DDy D,

where

DI,J = H (xj —513’1)2,

i€l jet
and then we can replace p; ; in (10) by w;D; ;Dy. As an example of this,
in the quadratic case, the limit of p(x) as w;, w; — 00, @ # j, is

qW Z ,uzjkpzjk / Z /Mjkpmk

k#i,j k#i.j
where
Pik = wi(x) — x,)2($k - ﬂfj)Q-
Figure 3 shows the result of applying the formula of Corollary 1 using the

same data as in Figure 1 but with w3 = 0o on the left and ws, w4, wg = 0o
on the right. All other weights are equal to 1.

8
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Figure 3: Limiting case when some weights are set to infinity.

5 Derivative estimation

Least squares approximation is often used to estimate derivatives. From (9),

f7(x) = = > AP (@ / > Ak

KePn+1 KePni1

for r = 1,...,n. If we want to estimate f") at some point x; and we trust the
value of f there we might prefer to let w; — oo and take the r-th derivative
of the limiting polynomial. Then Corollary 1 gives

f(r)(xl) Z,uz Jpluj T /ZM@J

In the linear case this gives the first derivative estimate

) R Zﬂij[ﬂfi>$j]f/ZMij~

i i

with s;; as in (11).

6 L, approximation

There is a similar interpolation formula for L, approximation in an interval
[a,b]. Suppose f : [a,b] — R is a continuous function and w : [a,b] — R



is a positive, integrable weight function. For any n > 0, there is a unique
polynomial p of degree at most n that minimizes

[ s - pe)? (13

To describe the formula let Q,,,; denote the set of all sets of n+41 distinct
points in [a,b]. Each T' € Q,,41 has the form

T = (to,t1,...,tn), a<tg<ty<---<t,<h.

Let pr(z) be the polynomial interpolant to f of degree at most n at the
points of 7', let

wr = H w(tz),
=0
let

Dr= ] t—t)

0<i<j<n

and set Ay = wprDp. Further, define

/ F:/ Flto, t1, ... tn) dtodty - dt,,
TEQn+1 a<to<t1<-<tn<b

for a function F' of n + 1 variables, integrable in this sense.
We claim

Theorem 2 Forx € R,

= [ o/ [ (1)

For example, in the linear case, the theorem says that

p(z) = / AstPst(x) ds dt/ / At ds dt,
a<s<t<b a<s<t<b

where p,; is the linear interpolant to f at the points s and ¢, and

Aot = w(s)w(t)(t — s)°.

10



We note that pr(x) regarded as a function of 7" with z fixed is continuous
in Tif f € C™[a,b]. In the limit as two points in 7" approach each other, pr
becomes a Hermite interpolant; see [1] and [3]. However, even for f merely
continuous, the integral in the numerator of (14) is well defined due to the
term Dp. Writing pr in Lagrange form

pr(e) =3 Lig@)f(s),  Lir() = I &%

j=0i T U

we see that the division by the differences ¢; — ¢, is cancelled out by the dif-
ferences in Dr. For each i = 0,...,n, the product DrL; r(z) is a polynomial
in ty,...,t,, and therefore the product wrDyL;r(x)f(t;) is integrable with
respect to T

Proof. The proof is analogous to the discrete case. We write p as in (6). The
normal equations for the minimization of (13) are Ac = b, where

Juw®)  Jw@®)t - [w(t)"
Jw®)t  [w@)* - [w(t)tmt!

A= : : : ’
Jw@)t™ [w(E)t"tt o [w(t)e*
c=(co,c1y...,0,)7, and
T
b=([ws. [wtrso..... [oerrso) .
and all integrals are over ¢ in [a,b]. Using Cramer’s rule, ¢; = |4;]/|A4],

j=0,1,...,n, with A as above and A; the matrix formed by replacing the
(7 + 1)-st column of A by b.
To find the determinant of A, we can write it as

a=f (1) i ,

i,k=0,1,....,n

where ¢;(t) = w(t)t’, and 1;(t) = t'. Then by the integral version of the
Cauchy-Binet theorem [4, Formula (2.5)],

A = / el

11



and therefore,

A = / wrlViel,
TEQn+1

where V7 is the Vandermonde determinant

1ty --- 7
1t - "
Vo= | !
1 t, tn

To find |A;| we write A; as

A= [ [ stoiinal ,

i,k=0,1,....n

where 9;(t) =, i # j, and ;(t) = f(¢).

Then the integral version of the Cauchy-Binet theorem gives
Y M O A
T€Q7L+l

and therefore,
A= wrlValVial,
TG Qn+1

where

Lo &7 flte) BTt
Vir=|: : : :
Lo 7t ft,)

Similar to the discrete case,
pr(z) = Z ¢,
§=0

where ¢;r = |V;r|/|Vr|, and the remaining steps of the proof are the same
as in the proof of Theorem 1. a
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7 Multivariate approximation

The same principle applies in the multivariate case. Let us just illustrate this
in the bivariate case. Suppose (z1,1),. .-, (Zm,ym) are points in R Given
weights w; > 0 and function values f(z;,v;), i = 1,...,m, consider the
problem of finding a polynomial p(x,y) of degree at most n that minimizes

Z wi(f (25, y:) — p(as, yz’))%

=1

Letting N = (";2), we can represent p as

N
p(r,y) =Y ¢;Bi(z,y),
j=1
with respect to the basis
(Bl(x7 y)? AR 7BN(:C7 y)) - (17 ‘f’E’ y? ‘/’U27 xy? y27 AR an7 xnily? AR 7yn)7

and we will assume that N < m. Let V € R™ be the matrix

V= [Bj (xiy yi)]i:l,...,m,j:l,...,Na

and for each K = {k‘l,kig,. . .,k‘N} € Py with £ < k’Q < - K< k’N, let Vi be
the square submatrix

Vik = [Bj<$kiaylﬂ)]i,j:l,‘..,N‘

Let us next suppose that the points (z;,y;) are such that there is at least one
K € Py such that Vi is non-singular. Then V has full rank N, and, as is
well known, there is a unique minimizer p.

But we can now go a step further and derive a formula for p in terms of
interpolants. Letting

Py = {K € Py : |Vi| # 0},

and following the steps of the proof of Theorem 1 we obtain the formula

pley) = > Mevk@y) [ D he, (wy) eRL(15)

KEﬁN KEﬁN
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Here, similar to before, px is the polynomial of degree at most n that inter-
polates f at the points (z;,4;), i € K, wx = [];c wi, and Ax = wi|Vi|*.
However, the sum is only over subsets K for which |Vk| # 0 (and pg is well
defined). This is because when we follow the proof of Theorem 1 to derive
(15), and we reach the two sums analogous to (7) and (8), any K for which
|Vi| = 0 can be discarded.

For example, in the linear case n = 1, we have N = 3 and for K =
{k1, ko, ks} in P3 with k; < ko < k3, we have

U g Yk,
VK =1 =z ky  Yks
1 € ks ykg

Thus the sum in (15) is over triples of points that are not collinear.

Similar to the univariate case, partial derivatives of p can be expressed
as averages of the partial derivatives of the px. The same principle applies
to approximation in several variables.
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