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Abstract

We derive a formula for weighted polynomial least squares approx-

imation which expresses the approximant as a convex combination of

interpolants. There is a similar formula for L2 approximation and the

same principle applies to multivariate approximation.
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1 Introduction

We usually think of least squares approximation as an alternative to inter-
polation. It is a way of reducing data and of avoiding the sometimes poor
behaviour of interpolation due to the spacing of the points or noise in the
data. In this paper we show that the two are nevertheless closely related. The
approximant can be expressed as a weighted average of many interpolants,
which are somehow smoothed out by this averaging.

Let x1, x2, . . . , xm, m ≥ 1, be distinct points in R, and let f be some real-
valued function defined at these points. Let w1, w2, . . . , wm > 0 be positive
weights associated with the points. As is well known, for any degree n,
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0 ≤ n ≤ m − 1, the associated least squares approximation is the unique
polynomial p(x) of degree at most n that minimizes

m∑

i=1

wi(f(xi)− p(xi))
2. (1)

One approach to finding p is to represent it in monomial form, and to find
its coefficients by solving the normal equations or using QR factorization.
Another is to construct orthogonal polynomials with respect to the points
and weights, and then to find p as a linear combination of these. There are
many texts on this topic, see for example, [2, Sec. 3.5] and [3, Chap. 5].

In this paper we derive a formula for p which expresses it as a weighted
average of all the interpolants to f over sets of n+1 points among x1, . . . , xm.
Despite its simplicity, we have not been able to find it in the mathematical
literature. The formula is ‘combinatorial’ and contains

(
m

n+1

)
terms and so

we are not suggesting to use it as a method of computing p. However, it is
convenient for analyzing the influence of the weights on p. For example, as is
well known, if we let the weights at one or more points tend to infinity, in the
limit, p interpolates f at these points. One could find this limiting polynomial
by imposing interpolation constraints at these points and minimizing over the
remaining ones, using Lagrange multipliers. We instead obtain a formula as
a weighted average of interpolants.

There is a similar formula for L2 approximation and the same principle
applies to multivariate approximation.

2 Interpolation formula

The interpolation formula is as follows. Let PN denote the set of all subsets of
{1, . . . ,m} of cardinalityN . The cardinality of PN is

(
m

N

)
. For eachK ∈ Pn+1

let pK(x) denote the polynomial of degree at most n that interpolates f at
the points xi, i ∈ K, let wK be the product of weights

wK =
∏

i∈K

wi,

and let DK be the product of squared distances

DK =
∏

{i,j}⊂K

(xj − xi)
2, (2)
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with the convention that this product is 1 if n = 0. Let λK = wKDK .
We will show

Theorem 1 For x ∈ R,

p(x) =
∑

K∈Pn+1

λKpK(x)
/ ∑

K∈Pn+1

λK . (3)

For example, in the linear case, the theorem tells us that

p(x) =
∑

{i,j}∈P2

λijpij(x)
/ ∑

{i,j}∈P2

λij,

where pij is the linear interpolant to f at xi and xj and

λij = wiwj(xj − xi)
2. (4)

In the quadratic case,

p(x) =
∑

{i,j,k}∈P3

λijkpijk(x)
/ ∑

{i,j,k}∈P3

λijk,

where
λijk = wiwjwk(xj − xi)

2(xk − xi)
2(xk − xj)

2, (5)

and pijk is the quadratic interpolant to f at xi, xj, xk. At the other extreme,
if n = m− 1, p interpolates f . If n = m− 2, then

p(x) =
m∑

i=1

λ̂ip{1,...,m}\i

/ m∑

i=1

λ̂i,

where, by cancelling common factors in λ{1,...,m}\i,

λ̂i =
1

wi

∏

j 6=i

1

(xj − xi)2
.

Proof. Let

p(x) =
n∑

j=0

cjx
j. (6)
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be the polynomial that minimizes (1). The normal equations for (1) can be
written as Ac = b, where

A =




∑
wk

∑
wkxk · · ·

∑
wkx

n
k∑

wkxk
∑
wkx

2
k · · ·

∑
wkx

n+1
k

...
...

...∑
wkx

n
k

∑
wkx

n+1
k · · ·

∑
wkx

2n
k


 ,

c = (c0, c1, . . . , cn)
T , and

b =
(∑

wkf(xk),
∑

wkxkf(xk), . . . ,
∑

wkx
n
kf(xk)

)T

,

and all summations are over k = 1, . . . ,m. By Cramer’s rule, cj is the
quotient of determinants cj = |Aj|/|A|, j = 0, 1, . . . , n, where A is as above
and Aj is the matrix formed by replacing the (j + 1)-st column of A by b.

We now expand the determinants of A and Aj, j = 0, 1, . . . , n. Firstly,
we can write A as the product

A =




w1 · · · wm

w1x1 · · · wmxm
...

...
w1x

n
1 · · · wmx

n
m






1 x1 · · · xn1
...

...
...

1 xm · · · xnm


 .

Then, by the Cauchy-Binet theorem [4, p. 1],

|A| =
∑

K∈Pn+1

wK |VK |
2, (7)

where VK is the Vandermonde matrix

VK =




1 xk0 · · · xnk0
1 xk1 · · · xnk1
...

...
1 xkn · · · xnkn


 ,

and K = {k0, k1, . . . , kn} with k0 < k1 < · · · < kn. As is well known, the
determinant of VK is

|VK | =
∏

0≤α<β≤n

(xkβ − xkα),
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and so its square is DK in (2). While the sign of |VK | depends on the ordering
of k0, k1, . . . , kn, DK does not. Secondly, we can similarly express Aj as the
product

Aj =




w1 · · · wm

w1x1 · · · wmxm
...

...
w1x

n
1 · · · wmx

n
m






1 · · · xj−1

1 f(x1) xj+1
1 · · · xn1

...
...

...
...

...
1 · · · xj−1

m f(xm) xj+1
m · · · xnm


 ,

and using the Cauchy-Binet theorem again,

|Aj| =
∑

K∈Pn+1

wK |VK ||Vj,K |, (8)

where

Vj,K =



1 · · · xj−1

k0
f(xk0) xj+1

k0
· · · xnk0

...
...

...
...

1 · · · xj−1
kn

f(xkn) xj+1
kn

· · · xnkn


 .

Next observe that the polynomial interpolant pK to f can also be written in
monomial form, as

pK(x) =
n∑

j=0

cj,Kx
j,

and the interpolation conditions give the linear system VKcK = fK , where
cK = (c0,K , c1,K , . . . , cn,K)

T , and fK = (f(xk0), f(xk1), . . . , f(xkn))
T . By

Cramer’s rule applied to this linear system, we have cj,K = |Vj,K |/|VK |.
Therefore,

p(x) =
n∑

j=0

cjx
j =

n∑

j=0

∑
K wK |VK ||Vj,K |x

j

∑
K wK |VK |2

=
n∑

j=0

∑
K wK |VK |

2cj,Kx
j

∑
K wK |VK |2

=

∑
K wK |VK |

2pK(x)∑
K wK |VK |2

,

as claimed. ✷

Figure 1 shows an implementation of the formula of Theorem 1, using
degree n = 1 on the left and degree n = 5 on the right. The weights here are
equal to 1.
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Figure 1: Least squares using degrees n = 1 and n = 5.

3 Some simple consequences

For any r = 0, 1, . . . , n, the r-th derivative of p is also the same weighted
average of the r-th derivatives of the interpolants,

p(r)(x) =
∑

K∈Pn+1

λKp
(r)
K (x)

/ ∑

K∈Pn+1

λK , (9)

and so we have the simple upper and lower bounds

min
K∈Pn+1

p
(r)
K (x) ≤ p(r)(x) ≤ max

K∈Pn+1

p
(r)
K (x).

Figure 2 shows an example of the upper and lower bounds when n = 1 and
r = 0.

Similarly, the approximation error shares the same weighted average,

f(x)− p(x) =
∑

K∈Pn+1

λK(f(x)− pK(x))
/ ∑

K∈Pn+1

λK ,

and so

f(x)− p(x) =
∑

K∈Pn+1

λKφK(x)[{xi : i ∈ K}, x]f
/ ∑

K∈Pn+1

λK ,

where [{xi : i ∈ K}, x]f is the divided difference of f at the points xi, i ∈ K,
and x, and

φK(x) :=
∏

i∈K

(x− xi).
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Figure 2: Upper and lower bounds with n = 1.

4 Influence of the weights

It is clear from the interpolation formula that if we increase the weight wi

for some i ∈ {1, . . . ,m}, the interpolants pK for which i ∈ K will have a
greater influence on p than the others. In the limiting case that wi → ∞,
while keeping the other weights fixed, we expect that p will interpolate f
at xi. Similarly, for any distinct i, j, if wi, wj → ∞, we expect that p will
interpolate f at both xi and xj. We now confirm this mathematically and
derive a formula.

Let I be some subset of {1, . . . ,m} of cardinality r, where 1 ≤ r ≤ n+1,
and let qI(x) denote the limit of p(x) as wi → ∞ for all i ∈ I. Let PN(I)
denote the set of all subsets of {1, . . . ,m}\I of cardinality N . The cardinality
of PN(I) is

(
m−r

N

)
.

Corollary 1 If r = n+ 1 then qI = pI while if r < n+ 1,

qI(x) =
∑

J∈Pn+1−r(I)

µI,JpI∪J(x)
/ ∑

J∈Pn+1−r(I)

µI,J . (10)

where µI,J = wJDI∪J .

Clearly, in both cases qI(xi) = f(xi) for all i ∈ I.

Proof. We split the sums in (3) in both the numerator and the denominator
into two: ∑

K

=
∑

K:I⊂K

+
∑

K:I 6⊂K

.
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We then divide both numerator and denominator by wI and use the fact that
when I ⊂ K, wK/wI = wK\I . Then letting wi → ∞ for i ∈ I, p(x) converges
to the limit

qI(x) =

∑
K:I⊂K wK\IDKpK(x)∑

K:I⊂K wK\IDK

.

If r = n+1 we must haveK = I in the two sums and we obtain qI(x) = pI(x).
If r < n + 1 we express K as the disjoint union I ∪ J and change the sum
over K to a sum over J . ✷

For example, in the linear case, the limit of p(x) as wi → ∞ is

qi(x) =
∑

j 6=i

µijpij(x)
/∑

j 6=i

µij,

where
µij = wj(xj − xi)

2. (11)

In the quadratic case, the limit of p(x) as wi → ∞ is

qi(x) =
∑

{j,k}∈P2(i)

µijkpijk(x)
/ ∑

{j,k}∈P2(i)

µijk,

where
µijk = wjwk(xj − xi)

2(xk − xi)
2(xk − xj)

2. (12)

If the cardinality of I is greater than 1, there is some cancellation in the
limit formula (10) because

DI∪J = DIDI,JDJ

where
DI,J =

∏

i∈I,j∈J

(xj − xi)
2,

and then we can replace µI,J in (10) by wJDI,JDJ . As an example of this,
in the quadratic case, the limit of p(x) as wi, wj → ∞, i 6= j, is

qij(x) =
∑

k 6=i,j

µijkpijk(x)
/ ∑

k 6=i,j

µijkpijk(x),

where
µijk = wk(xk − xi)

2(xk − xj)
2.

Figure 3 shows the result of applying the formula of Corollary 1 using the
same data as in Figure 1 but with w3 = ∞ on the left and w2, w4, w6 = ∞
on the right. All other weights are equal to 1.
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Figure 3: Limiting case when some weights are set to infinity.

5 Derivative estimation

Least squares approximation is often used to estimate derivatives. From (9),

f (r)(x) ≈ p(r)(x) =
∑

K∈Pn+1

λKp
(r)
K (x)

/ ∑

K∈Pn+1

λK ,

for r = 1, . . . , n. If we want to estimate f (r) at some point xi and we trust the
value of f there we might prefer to let wi → ∞ and take the r-th derivative
of the limiting polynomial. Then Corollary 1 gives

f (r)(xi) ≈ q
(r)
i (xi) =

∑

J

µi,Jp
(r)
i∪J(xi)

/∑

J

µi,J .

In the linear case this gives the first derivative estimate

f ′(xi) ≈
∑

j 6=i

µij[xi, xj ]f
/∑

j 6=i

µij.

with µij as in (11).

6 L2 approximation

There is a similar interpolation formula for L2 approximation in an interval
[a, b]. Suppose f : [a, b] → R is a continuous function and w : [a, b] → R

9



is a positive, integrable weight function. For any n ≥ 0, there is a unique
polynomial p of degree at most n that minimizes

∫ b

a

w(t)(f(t)− p(t))2 dt. (13)

To describe the formula let Qn+1 denote the set of all sets of n+1 distinct
points in [a, b]. Each T ∈ Qn+1 has the form

T = (t0, t1, . . . , tn), a ≤ t0 < t1 < · · · < tn ≤ b.

Let pT (x) be the polynomial interpolant to f of degree at most n at the
points of T , let

wT =
n∏

i=0

w(ti),

let
DT =

∏

0≤i<j≤n

(tj − ti)
2,

and set λT = wTDT . Further, define

∫

T∈Qn+1

F =

∫

a≤t0<t1<···<tn≤b

F (t0, t1, . . . , tn) dt0dt1 · · · dtn,

for a function F of n+ 1 variables, integrable in this sense.
We claim

Theorem 2 For x ∈ R,

p(x) =

∫

T∈Qn+1

λTpT (x)
/∫

T∈Qn+1

λT . (14)

For example, in the linear case, the theorem says that

p(x) =

∫

a≤s<t≤b

λstpst(x) ds dt
/∫

a≤s<t≤b

λst ds dt,

where pst is the linear interpolant to f at the points s and t, and

λst = w(s)w(t)(t− s)2.
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We note that pT (x) regarded as a function of T with x fixed is continuous
in T if f ∈ Cn[a, b]. In the limit as two points in T approach each other, pT
becomes a Hermite interpolant; see [1] and [3]. However, even for f merely
continuous, the integral in the numerator of (14) is well defined due to the
term DT . Writing pT in Lagrange form

pT (x) =
n∑

i=0

Li,T (x)f(s), Li,T (x) =
n∏

j=0,j 6=i

x− tj
ti − tj

,

we see that the division by the differences ti − tj is cancelled out by the dif-
ferences in DT . For each i = 0, . . . , n, the product DTLi,T (x) is a polynomial
in t0, . . . , tn, and therefore the product wTDTLi,T (x)f(ti) is integrable with
respect to T .

Proof. The proof is analogous to the discrete case. We write p as in (6). The
normal equations for the minimization of (13) are Ac = b, where

A =




∫
w(t)

∫
w(t)t · · ·

∫
w(t)tn∫

w(t)t
∫
w(t)t2 · · ·

∫
w(t)tn+1

...
...

...∫
w(t)tn

∫
w(t)tn+1 · · ·

∫
w(t)t2n


 ,

c = (c0, c1, . . . , cn)
T , and

b =

(∫
w(t)f(t),

∫
w(t)tf(t), . . . ,

∫
w(t)tnf(t)

)T

,

and all integrals are over t in [a, b]. Using Cramer’s rule, cj = |Aj|/|A|,
j = 0, 1, . . . , n, with A as above and Aj the matrix formed by replacing the
(j + 1)-st column of A by b.

To find the determinant of A, we can write it as

A =

[∫ b

a

φi(t)ψk(t) dt

]

i,k=0,1,...,n

,

where φi(t) = w(t)ti, and ψi(t) = ti. Then by the integral version of the
Cauchy-Binet theorem [4, Formula (2.5)],

|A| =

∫

T∈Qn+1

|[φk(ti)]ik||[ψk(ti)]ik|,
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and therefore,

|A| =

∫

T∈Qn+1

wT |VT |
2,

where VT is the Vandermonde determinant

VT =




1 t0 · · · tn0
1 t1 · · · tn1
...

...
1 tn · · · tnn


 .

To find |Aj| we write Aj as

Aj =

[∫ b

a

φi(t)ψ̂k(t) dt

]

i,k=0,1,...,n

,

where ψ̂i(t) = ti, i 6= j, and ψ̂j(t) = f(t).
Then the integral version of the Cauchy-Binet theorem gives

|Aj| =

∫

T∈Qn+1

|[φk(ti)]ik||[ψ̂k(ti)]ik|,

and therefore,

|Aj| =

∫

T∈Qn+1

wT |VT ||Vj,T |,

where

Vj,T =



1 · · · tj−1

0 f(t0) tj+1
0 · · · tn0

...
...

...
...

1 · · · tj−1
n f(tn) tj+1

n · · · tnn


 .

Similar to the discrete case,

pT (x) =
n∑

j=0

cj,Tx
j,

where cj,T = |Vj,T |/|VT |, and the remaining steps of the proof are the same
as in the proof of Theorem 1. ✷
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7 Multivariate approximation

The same principle applies in the multivariate case. Let us just illustrate this
in the bivariate case. Suppose (x1, y1), . . . , (xm, ym) are points in R

2. Given
weights wi > 0 and function values f(xi, yi), i = 1, . . . ,m, consider the
problem of finding a polynomial p(x, y) of degree at most n that minimizes

m∑

i=1

wi(f(xi, yi)− p(xi, yi))
2.

Letting N =
(
n+2
2

)
, we can represent p as

p(x, y) =
N∑

j=1

cjBj(x, y),

with respect to the basis

(B1(x, y), . . . , BN(x, y)) = (1, x, y, x2, xy, y2, . . . , xn, xn−1y, . . . , yn),

and we will assume that N ≤ m. Let V ∈ R
m,N be the matrix

V = [Bj(xi, yi)]i=1,...,m,j=1,...,N ,

and for each K = {k1, k2, . . . , kN} ∈ PN with k1 < k2 < · · · < kN , let VK be
the square submatrix

VK = [Bj(xki , yki)]i,j=1,...,N .

Let us next suppose that the points (xi, yi) are such that there is at least one
K ∈ PN such that VK is non-singular. Then V has full rank N , and, as is
well known, there is a unique minimizer p.

But we can now go a step further and derive a formula for p in terms of
interpolants. Letting

P̂N = {K ∈ PN : |VK | 6= 0},

and following the steps of the proof of Theorem 1 we obtain the formula

p(x, y) =
∑

K∈P̂N

λKpK(x, y)
/ ∑

K∈P̂N

λK , (x, y) ∈ R
2. (15)
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Here, similar to before, pK is the polynomial of degree at most n that inter-
polates f at the points (xi, yi), i ∈ K, wK =

∏
i∈K wi, and λK = wK |VK |

2.
However, the sum is only over subsets K for which |VK | 6= 0 (and pK is well
defined). This is because when we follow the proof of Theorem 1 to derive
(15), and we reach the two sums analogous to (7) and (8), any K for which
|VK | = 0 can be discarded.

For example, in the linear case n = 1, we have N = 3 and for K =
{k1, k2, k3} in P3 with k1 < k2 < k3, we have

VK =



1 xk1 yk1
1 xk2 yk2
1 xk3 yk3


 .

Thus the sum in (15) is over triples of points that are not collinear.
Similar to the univariate case, partial derivatives of p can be expressed

as averages of the partial derivatives of the pK . The same principle applies
to approximation in several variables.
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